The expression of the let-7 small regulatory RNA is controlled by ecdysone during metamorphosis in Drosophila melanogaster.

نویسندگان

  • Lorenzo F Sempere
  • Edward B Dubrovsky
  • Veronica A Dubrovskaya
  • Edward M Berger
  • Victor Ambros
چکیده

In Caenorhabditis elegans, the heterochronic pathway controls the timing of developmental events during the larval stages. A component of this pathway, the let-7 small regulatory RNA, is expressed at the late stages of development and promotes the transition from larval to adult (L/A) stages. The stage-specificity of let-7 expression, which is crucial for the proper timing of the worm L/A transition, is conserved in Drosophila melanogaster and other invertebrates. In Drosophila, pulses of the steroid hormone 20-hydroxyecdysone (ecdysone) control the timing of the transition from larval to pupal to adult stages. To test whether let-7 expression is regulated by ecdysone in Drosophila, we used Northern blot analysis to examine the effect of altered ecdysone levels on let-7 expression in mutant animals, organ cultures, and S2 cultured cells. Experiments were conducted to test the role of Broad-Complex (BR-C), an essential component in the ecdysone pathway, in let-7 expression. We show that ecdysone and BR-C are required for let-7 expression, indicating that the ecdysone pathway regulates the temporal expression of let-7 in Drosophila. These results demonstrate an interaction between steroid hormone signaling and the heterochronic pathway in insects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coordinate regulation of small temporal RNAs at the onset of Drosophila metamorphosis.

The lin-4 and let-7 small temporal RNAs play a central role in controlling the timing of Caenorhabditis elegans cell fate decisions. let-7 has been conserved through evolution, and its expression correlates with adult development in bilateral animals, including Drosophila [Nature 408 (2000), 86]. The best match for lin-4 in Drosophila, miR-125, is also expressed during pupal and adult stages of...

متن کامل

Temporal regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and broad-Complex gene activity.

lin-4 and let-7 are founding members of an extensive family of genes that produce small transcripts, termed microRNAs (miRNAs). In Caenorhabditis elegans, lin-4 and let-7 control the timing of postembryonic events by translational repression of target genes, permitting progression from early to late developmental programs. To identify Drosophila melanogaster miRNAs that could play similar roles...

متن کامل

Essential role of grim-led programmed cell death for the establishment of corazonin-producing peptidergic nervous system during embryogenesis and metamorphosis in Drosophila melanogaster

In Drosophila melanogaster, combinatorial activities of four death genes, head involution defective (hid), reaper (rpr), grim, and sickle (skl), have been known to play crucial roles in the developmentally regulated programmed cell death (PCD) of various tissues. However, different expression patterns of the death genes also suggest distinct functions played by each. During early metamorphosis,...

متن کامل

Ecdysteroid titers and developmental expression of ecdysteroid-regulated genes during metamorphosis of the yellow fever mosquito, Aedes aegypti (Diptera: Culicidae).

Ecdysteroid titers and expression profiles of ecdysone-regulated genes were determined during the last instar larval and during the pupal stages of Aedes aegypti (Diptera: Culicidae). Three peaks of ecdysteroids occurring at approximately 24, 30-33 and 45-48h after ecdysis to the fourth instar larval stage were detected. In the pupa, a large peak of ecdysteroids occurred between 6 and 12h after...

متن کامل

Ecdysone-induced expression of the caspase DRONC during hormone-dependent programmed cell death in Drosophila is regulated by Broad-Complex

The steroid hormone ecdysone regulates both cell differentiation and cell death during insect metamorphosis, by hierarchical transcriptional regulation of a number of genes, including the Broad-Complex (BR-C), the zinc finger family of transcription factors. These genes in turn regulate the transcription of a number of downstream genes. DRONC, a key apical caspase in Drosophila, is the only kno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Developmental biology

دوره 244 1  شماره 

صفحات  -

تاریخ انتشار 2002